Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb > Cd > As > Zn > Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg(-1) day(-1) for Cu and 94.52 mg kg(-1) day(-1) for Zn, but that for adult oyster is 10.79 mg kg(-1) day(-1) for Cu and 137.24 mg kg(-1) day(-1) for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-014-3907-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!