Objectives: The aim of the study was to assess the frequency of pyramidal lobe (PL) detected in iodine-131 (I-131) scans of thyroid bed in patients after thyroidectomy for differentiated thyroid cancer (DTC) and to investigate influence of PL on endogenous thyrotropin (TSH) stimulation as well as on the effects of the radio-iodine ablation in one-year follow-up.
Patients And Methods: This study was designed as a retrospective analysis of 302 radio-iodine neck scans of patients thyroidectomized due to DTC. The study population was selected from patients with PL detected in thyroid bed scintigraphy. Patients without PL were included to the control group. The study and the control groups did not differ in age, sex of patients, histological type and stage of the DTC.
Results: Pyramidal lobes were found in 30.5% of all patients. Patients in the study group underwent repeat surgery more often than controls without PL. Preablative TSH level in patients with PL was statistically lower than in the control group, in contrast to free thyroid hormones, which were higher in patients with PL. Preablative and postablative TSH-stimulated thyroglobulin (Tg) and antibodies against thyroglobulin (TgAbs) were measured in both groups, and comparison did not reveal differences. Moreover, for the per-patient analysis, sites of uptake in whole body scintigraphy performed 1 year after radio-iodine remnant ablation (RRA) did not differ between the study and the control groups.
Conclusion: Pyramidal lobe decreases endogenous TSH stimulation without impact on radio-iodine therapy outcome in patients with DTC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ando.2014.02.001 | DOI Listing |
Chin J Traumatol
December 2024
Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:
Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.
Med Ultrason
December 2024
Department General Internal Medicine (DAIM), Hospitals Hirslanden Bern Beau Site, Salem and Permanence, Bern.
The present work describes the process of the sonographic examination, normal findings and measurements in the B-mode ultrasound evaluation. Reference is made to anatomical variants in shape, the pyramidal lobe, tubercle of Zuckerkandl, ectopic thyroid tissue, and their significance. Particular attention is paid to the reference values, the very miscellaneous reference values in different geographic regions of the world and influencing factors.
View Article and Find Full Text PDFJ Neurosci
December 2024
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
The subiculum represents a crucial brain pivot in regulating seizure generalization in temporal lobe epilepsy (TLE), primarily through synergy of local GABAergic and long-projecting glutamatergic signaling. However, little is known about how subicular GABAergic interneurons are involved in a cell-type-specific way. Here, employing Ca fiber photometry, retrograde monosynaptic viral tracing and chemogenetics in epilepsy models of both male and female mice, we elucidate circuit reorganization patterns mediated by subicular cell-type-specific interneurons and delineate their functional disparities in seizure modulation in TLE.
View Article and Find Full Text PDFMol Brain
November 2024
Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Temporal lobe epilepsy (TLE) is the most common form of medically-intractable epilepsy. Subicular hyperexcitability is frequently observed with TLE, presumably caused by impaired inhibition of local excitatory neurons. Here, we evaluated the effectiveness of silencing subicular pyramidal neurons to treat a rodent model of TLE.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2024
Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!