Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb.

Nat Neurosci

1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. [4] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.

Published: September 2014

Circuits in the brain possess the ability to orchestrate activities on different timescales, but the manner in which distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example of a place in which slow theta and fast gamma rhythms coexist. Furthermore, inhibitory interneurons that are generally implicated in rhythm generation are segregated into distinct layers, neatly separating local and global motifs. We combined intracellular recordings in vivo with circuit-specific optogenetic interference to examine the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits controlled rhythms on distinct timescales: local, glomerular networks coordinated theta activity, regulating baseline and odor-evoked inhibition, whereas granule cells orchestrated gamma synchrony and spike timing. Notably, granule cells did not contribute to baseline rhythms or sniff-coupled odor-evoked inhibition. Thus, activities on theta and gamma timescales are controlled by separate, dissociable inhibitory networks in the olfactory bulb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146518PMC
http://dx.doi.org/10.1038/nn.3760DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
16
theta activity
8
networks olfactory
8
odor-evoked inhibition
8
granule cells
8
independent control
4
gamma
4
control gamma
4
theta
4
gamma theta
4

Similar Publications

Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons.

Front Neurosci

December 2024

Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.

Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity.

View Article and Find Full Text PDF

Sensory processing abnormalities are a hallmark of autism spectrum disorder (ASD) and are included in its diagnostic criteria. Among these challenges, food neophobia has garnered attention due to its prevalence and potential impact on nutritional intake and health outcomes. This review describes the correlation between novel odor perception and feeding difficulties within the context of ASD.

View Article and Find Full Text PDF

Purpose: We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.

Materials And Methods: Twenty-one rabbits were included in the study.

View Article and Find Full Text PDF

Introduction And Objectives: Isolated hypogonadotropic hypogonadism (IHH) may be associated with pituitary gland and olfactory system disorders. We aimed to correlate findings of Magnetic Resonance Imaging (MRI) of the pituitary gland and olfactory system in IHH patients with the patients' olfactory phenotype.

Patients And Methods: The present research was a single-center retrospective case-control study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!