Pharmacokinetic (PK) interactions between the cytochrome P450 3A4 (CYP3A4) pathway and transdermally administered ethinyl estradiol (EE) and gestodene (GSD) were investigated. This paper reports the findings of three open-label, intra-individual, one-way crossover, Phase I trials. In two studies, women used a novel contraceptive patch for 3 weeks during two 4-week study periods; in the second period, the CYP3A4 inhibitors erythromycin (Study 1) or ketoconazole (Study 2) were administered concurrently. In a third study, women received single doses of the CYP3A4 model substrate midazolam, alone and after 3 weeks of concurrent patch application. In each period, the EE/GSD patch (delivering low EE and GSD doses resulting in the same systemic exposure as a combined oral contraceptive containing 0.02 mg EE and 0.06 mg GSD) was applied once weekly for 3 weeks, with one patch-free week. Erythromycin, ketoconazole, and midazolam were administered orally. Main outcome measures were area under the curves (AUCs) and maximum plasma concentration (C max) of EE, and total and unbound GSD (Studies 1 and 2). AUC and C max of midazolam (Study 3). Co-administration of CYP3A4 inhibitors did not affect EE metabolism, and had only weak effects on the PK of total and unbound GSD. The patch had no clinically relevant effect on metabolism of the CYP3A4 substrate midazolam.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13318-014-0215-8 | DOI Listing |
Technol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Biol Pharm Bull
January 2025
Department of Pharmacy, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan.
Using a large health insurance database in Japan, we examined the real-world usage of budesonide enteric-coated capsules (BUD) in treating Crohn's disease. We analyzed data from the Japan Medical Data Center claims database for Crohn's disease patients prescribed BUD from April 2016 to March 2021, focusing on prescription status, adverse events (AEs), monitoring tests, and concomitant medications over 2 years following BUD initiation. Patients were categorized into two groups based on BUD usage duration: ≤1 year and >1 year.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.
View Article and Find Full Text PDFMolecules
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
Green chemistry principles are pivotal in driving sustainable and innovative solutions to global health challenges. This study explores a hydroalcoholic extract from (chestnut) burrs, an underutilized natural resource, as a potent source of antimicrobial compounds against (). The extract demonstrated significant bactericidal activity, synergizing effectively with clarithromycin and showing additive effects with metronidazole.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Al-Saray Street, Al-Manial, Cairo, 11562, Egypt.
Background: Fungal invasive infections caused by Candida species pose a substantial public health risk with limited therapeutic options. Antifungal susceptibility testing (AFST) is necessary to optimize the therapy. The study aimed to compare different AFST methods of Candida spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!