The discovery of indole full agonists of the neurotensin receptor 1 (NTSR1).

Bioorg Med Chem Lett

Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA. Electronic address:

Published: August 2014

Neurotensin (NT) is an endogenous tridecapeptide found in the central nervous system (CNS) and in peripheral tissues. Neurotensin exerts a wide range of physiological effects and it has been found to play a critical role in a number of human diseases, such as schizophrenia, Parkinson's disease and drug addiction. The discovery of small-molecule non-peptide neurotensin receptor (NTSR) modulators would represent an important breakthrough as such compounds could be used as pharmacological tools, to further decipher the cellular functions of neurotensin, and potentially as therapeutic agents to treat human disease. Herein, we report the identification of non-peptide low-micromolar neurotensin receptor 1 (NTSR1) full agonists, discovered through structural optimization of the known NTSR1 partial agonist 1. In vitro cellular screenings, based on an intracellular Ca(2+) mobilization assay, revealed our best hit molecule 8 (SR-12062) to have an EC50 of 2 μM at NTSR1 with full agonist behaviour (Emax=100%), showing a higher efficacy and ∼90-fold potency improvement compared to parent compound 1 (EC50=178 μM; Emax=17%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130903PMC
http://dx.doi.org/10.1016/j.bmcl.2014.06.033DOI Listing

Publication Analysis

Top Keywords

neurotensin receptor
12
full agonists
8
receptor ntsr1
8
ntsr1 full
8
neurotensin
6
discovery indole
4
indole full
4
agonists neurotensin
4
ntsr1
4
ntsr1 neurotensin
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress.

Psychoneuroendocrinology

January 2025

Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified.

View Article and Find Full Text PDF

Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism.

Cell Res

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.

Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake.

View Article and Find Full Text PDF

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs), the largest family of drug targets, can signal through 16 subtypes of Gα proteins. Biased compounds that selectively activate therapy-relevant pathways promise to be safer, more effective medications. The determinants of bias are poorly understood, however, and rationally-designed, G protein-subtype-selective compounds are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!