An imaged-based profiling and analysis system was developed to predict clinically effective synergistic drug combinations that could accelerate the identification of effective multi-drug therapies for the treatment of triple-negative breast cancer and other challenging malignancies. The identification of effective drug combinations for the treatment of triple-negative breast cancer (TNBC) was achieved by integrating high-content screening, computational analysis, and experimental biology. The approach was based on altered cellular phenotypes induced by 55 FDA-approved drugs and biologically active compounds, acquired using fluorescence microscopy and retained in multivariate compound profiles. Dissimilarities between compound profiles guided the identification of 5 combinations, which were assessed for qualitative interaction on TNBC cell growth. The combination of the microtubule-targeting drug vinblastine with KSP/Eg5 motor protein inhibitors monastrol or ispinesib showed potent synergism in 3 independent TNBC cell lines, which was not substantiated in normal fibroblasts. The synergistic interaction was mediated by an increase in mitotic arrest with cells demonstrating typical ispinesib-induced monopolar mitotic spindles, which translated into enhanced apoptosis induction. The antitumour activity of the combination vinblastine/ispinesib was confirmed in an orthotopic mouse model of TNBC. Compared to single drug treatment, combination treatment significantly reduced tumour growth without causing increased toxicity. Image-based profiling and analysis led to the rapid discovery of a drug combination effective against TNBC in vitro and in vivo, and has the potential to lead to the development of new therapeutic options in other hard-to-treat cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253311 | PMC |
http://dx.doi.org/10.1016/j.molonc.2014.06.007 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China.
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China.
Rationale: Carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections are a severe complication resulting from granulocyte deficiency following chemotherapy for hematologic malignancies and have a high mortality rate. However, reports of disseminated organ infections secondary to bloodstream infections are rare.
Patient Concerns And Diagnoses: We report 2 cases of patients with acute lymphoblastic leukemia who both developed CRKP bloodstream infections during the granulocyte deficiency stage following chemotherapy, with 1 case of secondary bacterial liver abscess and 1 case of secondary septic arthritis.
JAMA Health Forum
January 2025
Department of Population Health Sciences, Weill Cornell Medical College, New York, New York.
Importance: The prevalence of pharmacies owned by integrated insurers and pharmacy benefit managers (PBMs), or insurer-PBMs, is of growing regulatory concern. However, little is known about the role of these pharmacies in Medicare, in which pharmacy network protections may influence market dynamics.
Objective: To evaluate the prevalence of insurer-PBM-owned pharmacies and the extent to which insurer-PBMs steer patients to pharmacies they own in Medicare.
Neuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!