A high-throughput semi-automated preparation for filtered synaptoneurosomes.

J Neurosci Methods

McMaster Integrative Neuroscience Discovery and Study Program, McMaster University, Canada.

Published: September 2014

Background: Synaptoneurosomes have become an important tool for studying synaptic proteins. The filtered synaptoneurosomes preparation originally developed by Hollingsworth et al. (1985) is widely used and is an easy method to prepare synaptoneurosomes. The hand processing steps in that preparation, however, are labor intensive and have become a bottleneck for current proteomic studies using synaptoneurosomes. For this reason, we developed new steps for tissue homogenization and filtration that transform the preparation of synaptoneurosomes to a high-throughput, semi-automated process.

New Method: We implemented a standardized protocol with easy to follow steps for homogenizing multiple samples simultaneously using a FastPrep tissue homogenizer (MP Biomedicals, LLC) and then filtering all of the samples in centrifugal filter units (EMD Millipore, Corp).

Results And Comparison With Existing Methods: The new steps dramatically reduce the time to prepare synaptoneurosomes from hours to minutes, increase sample recovery, and nearly double enrichment for synaptic proteins. These steps are also compatible with biosafety requirements for working with pathogen infected brain tissue.

Conclusions: The new high-throughput semi-automated steps to prepare synaptoneurosomes are timely technical advances for studies of low abundance synaptic proteins in valuable tissue samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2014.05.036DOI Listing

Publication Analysis

Top Keywords

high-throughput semi-automated
12
synaptic proteins
12
prepare synaptoneurosomes
12
synaptoneurosomes
8
filtered synaptoneurosomes
8
steps
6
preparation
4
semi-automated preparation
4
preparation filtered
4
synaptoneurosomes background
4

Similar Publications

Background: Historically, soil-transmitted helminth (STH) control and prevention strategies have relied on mass drug administration efforts targeting preschool and school-aged children. While these efforts have succeeded in reducing morbidity associated with STH infection, recent modeling efforts have suggested that expanding intervention to treatment of the entire community could achieve transmission interruption in some settings. Testing the feasibility of such an approach requires large-scale clinical trials, such as the DeWorm3 cluster randomized trial.

View Article and Find Full Text PDF

Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.

View Article and Find Full Text PDF

Introduction: The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped.

View Article and Find Full Text PDF

Understanding how a macromolecule's primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using MALDI-MS/MS, and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic -butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations.

View Article and Find Full Text PDF
Article Synopsis
  • * New methods for detecting NETosis have emerged, each with unique benefits and drawbacks, including a real-time microscopy technique that quantifies NET release and distinguishes NETs from other activated neutrophils.
  • * The study explores the use of the antibody inhibitor CIT-013, which effectively suppresses NET release, demonstrating the method's potential for high-throughput analysis of NETosis and its inhibitors in response to different stimuli related to diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!