PEG - a versatile conjugating ligand for drugs and drug delivery systems.

J Control Release

Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390001, Gujarat, India. Electronic address:

Published: October 2014

Polyethylene glycol (PEG) conjugation is a rapidly evolving strategy to solve hurdles in therapeutic delivery and is being used as an add-on tool to the traditional drug delivery methods. Chemically, PEGylation is a term used to denote modification of therapeutic molecules by conjugation with PEG. Efforts are constantly being made to develop novel strategies for conjugation of PEG with these molecules in order to increase its current applications. These strategies are specific to the therapeutic system used and also depend on the availability of activated PEGylating agents. Therefore, a prior knowledge is essential in selecting appropriate method for PEGylation. Once achieved, a successful PEGylation can amend the pharmacokinetic and pharmacodynamic outcomes of therapeutics. Specifically, the primary interest is in their ability to decrease uptake by reticuloendothelial system, prolong blood residence, decrease degradation by metabolic enzymes and reduce protein immunogenicity. The extensive research in this field has resulted into many clinical studies. The knowledge of outcome of these studies gave a good feedback and lessons which helped researchers to redesign PEG conjugates with improved features which can increase the chance of hitting the market. In light of this, the current paper highlights the approaches, novel strategies and the utilization of modern concept for PEG conjugation with respect to various bioactive components of clinical relevance. Moreover, this review also discusses potential clinical outcomes of the PEG conjugation, regulatory approved PEGylated product, clinical trials for newer formulations, and also provides future prospects of this technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2014.06.046DOI Listing

Publication Analysis

Top Keywords

peg conjugation
12
drug delivery
8
conjugation peg
8
novel strategies
8
peg
7
conjugation
5
peg versatile
4
versatile conjugating
4
conjugating ligand
4
ligand drugs
4

Similar Publications

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition.

ACS Appl Mater Interfaces

January 2025

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.

Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG-GFTATPPAPDSPQEP.

View Article and Find Full Text PDF

The safety screening of manufactured nanomaterials (MNMs) is essential for their adoption by consumers and the marketplace. Lately, animal-based testing has been replaced by mechanistically informative in vitro assays due to the requirements of regulatory agencies. Cell viability assays are widely employed for manufactured nanomaterial hazard screening as a first-tier approach.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!