Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene "experimental testicular teratoma 1 (ett1)". To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-014-9529-8DOI Listing

Publication Analysis

Top Keywords

129/sv-ter +/+
12
testicular teratoma
8
testicular teratomas
8
fetal testes
8
linkage analysis
8
candidate genes
8
ett development
8
gene responsible
8
ett1 loci
8
loci
5

Similar Publications

The Role of DND1 in Cancers.

Cancers (Basel)

July 2021

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.

The mutation in Dead-End 1 (), , which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv- mice. As an RNA-binding protein, DND1 can bind the 3'-untranslated region (3'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs.

View Article and Find Full Text PDF

Experimental testicular teratomas (ETTs) can be induced in 129/Sv mouse by E12.5 fetal testes transplant into adult testes. Previously, we conducted linkage analysis to explore candidate genes possibly involved in ETT development using F2 intercross fetuses derived from F1[LTXBJ × 129/Sv- + /Ter (+ /+)] hybrids.

View Article and Find Full Text PDF

Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids.

View Article and Find Full Text PDF

Primordial germ cells (PGC) were isolated from 8.5, 10.5, 12.

View Article and Find Full Text PDF

Objective: Atherosclerosis susceptibility is a genetic trait that varies between mouse strains. The goal of this study was to use a public mouse single nucleotide polymorphism (SNP) database to define the genetic loci that are associated with this trait, without the need to perform strain intercrosses that are normally required to obtain these loci.

Methods And Results: Apolipoprotein E (apoE)-deficient mice on 6 inbred genetic backgrounds were compared for atherosclerosis lesion size in the aortic root in 2 independent studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!