Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods. We show how trends in demography and in several local and global anthropogenic stressors are progressively degrading capacity of coastal waters to sustain these people. Far more effective approaches to environmental management are needed if the loss in provision of ecosystem goods and services is to be stemmed. We propose expanded use of marine spatial planning as a framework for more effective, pragmatic management based on ocean zones to accommodate conflicting uses. This would force the holistic, regional-scale reconciliation of food security, livelihoods, and conservation that is needed. Transforming how countries manage coastal resources will require major change in policy and politics, implemented with sufficient flexibility to accommodate societal variations. Achieving this change is a major challenge - one that affects the lives of one fifth of humanity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2014.06.005 | DOI Listing |
Sci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China. Electronic address:
The temporal variation and transport of Cs in the Beibu Gulf (BG) are still poorly understood. Here we measured Cs concentrations in the BG water column and surface sediments during 2022. We found that Cs in the BG water column was controlled by the movement and mixing of local water masses.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Management, Shenzhen University, Shenzhen 518073, China; Center for Marine Development,Macau University of Science and Technology, Macao, 999078, China; Shenzhen International Maritime Institute, Shenzhen 518081, China. Electronic address:
Ships generate large amounts of air pollutants, including nitrogen dioxide (NO) that profoundly impacts air quality and poses serious threats to human health. It is crucial to understand the dynamics and drivers of ship-induced NO concentrations in China to support the prevention and control of fine particulate matter (PM) and ozone (O) pollution. This study built Generalized Additive Models (GAMs) to reveal the nonlinear effects of meteorological factors and ship emissions on ship-induced NO concentrations based on the Tropospheric Monitoring Instrument (TROPOMI) satellite data, AIS based emission model and meteorological data.
View Article and Find Full Text PDFVet Ital
December 2024
Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy.
Water temperature is a vital parameter impacting the growth and survival of aquatic life. Using satellite-derived infrared data, this study analysed the trend of sea surface temperature (SST) from 2008 to 2022 of the Adriatic coastal waters of Italian regions. The "Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis" product collected from the Copernicus Marine Service of European Copernicus programme was used, as a good compromise among spatial accuracy, temporal frequency and coverage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
The supply of nitrogen (N) and the efficiency with which it is used by phytoplankton serve as two fundamental controls on the productivity of many marine ecosystems. Shifts in nitrogen use efficiency (NUE) can decouple primary production from N-supply but how NUE varies across systems is poorly known. Through a global synthesis of how total N (TN) is apportioned among phytoplankton, particulate, dissolved inorganic, and dissolved organic pools, we demonstrate that NUE underlies broad variations in primary production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!