3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models.

Int J Comput Assist Radiol Surg

Modeling, Simulation and Visualization Engineering, Old Dominion University, Norfolk, VA, USA,

Published: January 2015

Purpose: More accurate and robust image segmentations are needed for identification of spine pathologies and to assist with spine surgery planning and simulation. A framework for 3D segmentation of healthy and herniated intervertebral discs from T2-weighted magnetic resonance imaging was developed that exploits weak shape priors encoded in simplex mesh active surface models.

Methods: Weak shape priors inherent in simplex mesh deformable models have been exploited to automatically segment intervertebral discs. An ellipsoidal simplex template mesh was initialized within the disc image boundary through affine landmark-based registration and was allowed to deform according to image gradient forces. Coarse-to-fine multi-resolution approach was adopted in conjunction with decreasing shape memory forces to accurately capture the disc boundary. User intervention is allowed to turn off the shape feature and guide model deformation when the internal simplex shape memory influence hinders detection of pathology. A resulting surface mesh was utilized for disc compression simulation under gravitational and weight loads using Simulation Open Framework Architecture. For testing, 16 healthy discs were automatically segmented, and five pathological discs were segmented with minimal supervision.

Results: Segmentation results were validated against expert guided segmentation and demonstrate mean absolute shape distance error of <1 mm. Healthy intervertebral disc compression simulation resulted in a bulging disc under vertical pressure of 100 N/cm(2).

Conclusion: This study presents the application of a simplex active surface model featuring weak shape priors for 3D segmentation of healthy as well as herniated discs. A framework was developed that enables the application of shape priors in the healthy part of disc anatomy, with user intervention when the priors were inapplicable. The surface-mesh-based segmentation method is part of a processing pipeline for anatomical modelling to support interactive surgery simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-014-1094-9DOI Listing

Publication Analysis

Top Keywords

compression simulation
8
intervertebral discs
8
weak shape
8
shape priors
8
simplex mesh
8
shape memory
8
shape
6
lumbar spine
4
spine intervertebral
4
disc
4

Similar Publications

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

Advanced adiabatic compressed air energy storage systems dynamic modelling: Impact of the heat storage device.

Heliyon

January 2025

IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.

Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors.

Cancers (Basel)

December 2024

Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.

Skull base tumors such as meningiomas and schwannomas are often pathologically benign. However, surgery for these tumors poses significant challenges because of their proximity to critical structures such as the brainstem, cerebral arteries, veins, and cranial nerves. These structures are compressed or encased by the tumor as they grow, increasing the risk of unintended injury to these structures, which can potentially lead to severe neurological deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!