A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans. | LitMetric

Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans.

Food Chem

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:

Published: December 2014

We investigated the ability of six polyethylene glycols (PEGs), with molecular weights ranging from 400 to 20,000 Da, to enhance the thermostability of β-cyclodextrin glycosyltransferase (β-CGTase) from Bacillus circulans. We found that PEGs with different molecular weights could activate and stabilize this β-CGTase, but to different degrees. The most significant increase (about 20%) in β-cyclodextrin-forming activity was achieved by adding 10-15% PEG 400. PEGs with low molecular weights also significantly enhanced the thermostability of β-CGTase; 15% PEG 1000 prolonged its half-life at 60°C by 6.5-fold, compared to a control. Fluorescence spectroscopy and circular dichroism analysis indicated that PEGs helped protect the tertiary and secondary structure of β-CGTase, respectively. This study provides an effective approach for improving the thermostability of CGTases and related enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.05.013DOI Listing

Publication Analysis

Top Keywords

molecular weights
12
polyethylene glycols
8
enhance thermostability
8
thermostability β-cyclodextrin
8
β-cyclodextrin glycosyltransferase
8
bacillus circulans
8
pegs molecular
8
glycols enhance
4
thermostability
4
glycosyltransferase bacillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!