Introduction: Laser Doppler imaging (LDI) provides early accurate determination of wound healing potential. LDI can scan large areas of up to 2500 cm2 within 2 min. This duration may require additional sedation in a mobile, uncooperative child. In five burn centres a faster Laser Doppler Line Scanner (LDLS) was assessed. This new imager scans 300 cm2 in 4s with potential benefit for patients and operators. The aim of this study was to assess the accuracy and convenience of the LDLS and to compare this with an established LDI imager.
Methods: Outpatients and admitted patients were included. LDI and LDLS images were obtained between 2 and 5 days post burn (PB). Photographs and records of wound and healing were obtained on day of scan and at 14 and 21 days PB. This provided data on three categories of burn wounds: healing within 14 days, 14-21 days and not healed within 21 days.
Results: The analysis included 596 burn areas from 204 burns patients. An accuracy of 94.2% was found with use of the LDLS compared with 94.4% for the original LDI imager.
Conclusions: The high accuracy of the new line-scan imager was comparable to that of the traditional LDI. Its size and mobility enabled easier ward and outpatient use. The higher scan speed was particularly beneficial for scans in paediatric patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.burns.2014.04.024 | DOI Listing |
J Biophotonics
January 2025
Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia.
The work is devoted to the study of the physiological variability of the microcirculatory-tissue system (MTS) parameters under normal conditions and during functional tests. The results were obtained in vivo using multimodal wearable analyzers implementing methods of laser Doppler flowmetry and fluorescence spectroscopy. Comprehensive data analysis and calculation of the coefficients of variation of the MTS parameters of the human body for various topographic and anatomical areas of the skin were carried out.
View Article and Find Full Text PDFMid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.
View Article and Find Full Text PDFWe present a dual isotope magneto-optical trap (MOT), simultaneous sub-Doppler laser cooling, and magnetic trapping of a spin-polarized K-K Bose-Fermi mixture realized in a single-chamber setup with an unenriched potassium dispenser as the source of atoms. We are able to magnetically confine more than 2.2 × 10 fermions ( = 9/2 , = 9/2) and 1.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Anesthesiology, Zhongda hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing City, 210009, Jiangsu Province, China.
Monitoring perioperative tissue perfusion is crucial in clinical anesthesia to protect organs and ensure patient safety. Indicators like hemodynamic parameters, tissue metabolism, and microcirculation markers are used for assessment. Studies show intraoperative hypotension negatively impacts outcomes, though blood pressure alone may not reflect tissue perfusion accurately.
View Article and Find Full Text PDFInt J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!