Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes.

Biochem Biophys Res Commun

Laboratory for Stem Cell Research, Dept. of Health Science and Technology, Aalborg University, Denmark. Electronic address:

Published: July 2014

Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.06.124DOI Listing

Publication Analysis

Top Keywords

uniaxial cyclic
8
adipose-derived stem
8
skeletal muscle
8
skeletal
5
ascs
5
cyclic strain
4
strain enhances
4
enhances adipose-derived
4
stem cell
4
cell fusion
4

Similar Publications

Objective:  To determine the effect of locking head inserts (LHI) on plate strain, stiffness, and deformation when applied to a 3.5-mm broad locking compression plate (LCP) in an open fracture-gap model.

Study Design:  Six, 13-hole, 3.

View Article and Find Full Text PDF

In accordance with German guideline ZTV-ING Part 4, full-locked coil ropes are provided with a three-layer corrosion protection coating based on epoxy resin and polyurethane, which must be renewed regularly. An alternative method is to use a coating of high-density polyethylene (HDPE), which is extruded onto the rope. In this article, the mechanical behavior of the thermoplastic material is studied, taking into account various accelerated aging processes, which are derived from the climatic boundary conditions of a real bridge structure and implemented in tests.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.

View Article and Find Full Text PDF

Mechanical Deformation Behavior of Polymer Blend Thin Films.

Macromol Rapid Commun

December 2024

School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!