Solid silica nanoparticles: applications in molecular imaging.

Contrast Media Mol Imaging

Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.

Published: November 2015

Silica and silica-based nanoparticles have been widely used for therapeutic and diagnostic applications in cancer mainly through delivery of drugs, genes and contrast agents. Development of synthesis methods has provided the possibility of fabricating silica nanoparticles with different sizes in nanometer ranges as well as silica-based multimodal nanoparticles with many innovative properties and intriguing applications in biomedicine. The surface of silica particles facilitates different methods of surface modifications and allows conjugation of various biomolecules such as proteins and nucleic acids. In this review, different methods of fabrication of silica and silica-based nanoparticles, their surface modification and the application of these nanoparticles in molecular imaging are discussed. Overall, the aim of this review is to address the development of silica and silica-based multifunctional nanoparticles that are introduced mainly for molecular imaging applications using optical, magnetic (MRI), X-ray (computed tomography) and multimodal imaging techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmmi.1611DOI Listing

Publication Analysis

Top Keywords

molecular imaging
12
silica silica-based
12
silica nanoparticles
8
silica-based nanoparticles
8
nanoparticles
7
silica
5
solid silica
4
applications
4
nanoparticles applications
4
applications molecular
4

Similar Publications

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.

View Article and Find Full Text PDF

Background: Multi-cancer early detection (MCED) tests may expand cancer screening. Characterizing diagnostic resolution approaches following positive MCED tests is critical. Two trials employed distinct resolution approaches: a molecular signal to predict tissue of origin (TOO) and an imaging-based diagnostic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!