Photo biological activation of NSO donor mixed-ligand complexes: in vivo and preclinical perspectives.

J Photochem Photobiol B

Research Department of Chemistry, VHNSN College, Virudhunagar 626 001, Tamil Nadu, India. Electronic address:

Published: September 2014

Pyrazolone incorporating N-acetylcysteine (NAC) mixed-ligand complexes are described as promising anti-inflammatory, anticonvulsant, SODs mimetic and cytotoxic compounds possibly due to its antioxidant profile. In this study, we have evaluated the pharmacologic activity, antioxidant and toxicological profiles of compounds (1-6). Among them, compounds 1 and 4 were haemobiocompatible than the others. Both complexes 1 and 4 display efficient photo-nuclease activity upon irradiation with UV-A light of 365 nm and red light of 647 nm as compared with others. Mechanistic studies reveal that the DNA cleavage oxidative pathway involves H2O2 and singlet oxygen as the reactive oxygen species. Interestingly, both compounds 1 and 4, show non-toxic effects in vitro to human normal lymphocyte cells, revealing that they are selective in killing only the cancer cells as expected for a better drug. In addition, considering the safety profile, these compounds are promising as preventive and/or therapeutic agents against oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2014.06.003DOI Listing

Publication Analysis

Top Keywords

mixed-ligand complexes
8
compounds
5
photo biological
4
biological activation
4
activation nso
4
nso donor
4
donor mixed-ligand
4
complexes vivo
4
vivo preclinical
4
preclinical perspectives
4

Similar Publications

Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .

View Article and Find Full Text PDF

In Silico Design of Dual Estrogen Receptor and Hsp90 Inhibitors for ER-Positive Breast Cancer Through a Mixed Ligand/Structure-Based Approach.

Molecules

December 2024

Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.

Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.

View Article and Find Full Text PDF

The mol-ecule of the title compound, [Ni(CHO)(CHN)(HO)]·CHOH, has triclinic () symmetry. This compound is of inter-est for its anti-microbial properties. The asymmetric unit comprises two independent complex mol-ecules, which are linked by N-H⋯O and O-H⋯O hydrogen bonds along [111].

View Article and Find Full Text PDF

The dinuclear β-diketiminato complex [LClDy(μ-Cl)DyL(THF)] () (L = {2,6-PrCH-NC(Me)CHC(Me)N-2,6-PrCH}) was obtained by reaction of DyCl with KL in a molar ratio of 1:1 and used for the preparation of the mixed-ligand complex [LDy(μ-3,5-Cat)] () by salt metathesis reaction with 3,5-CatK (3,5-Cat -3,5-di--butyl-catecholate). Reactions of 3,5-CatNa with [LLnCl(THF)] (Ln = Dy, Y) ligated with the less bulky ligand L = {2,4,6-MeCH-NC(Me)CHC(Me)N-2,4,6-MeCH} afforded the mixed-ligand THF-containing complexes [LLn(μ-3,5-Cat)(THF)] (Ln = Dy (), Y ()). All new complexes were fully characterized, and the solid-state structures were determined by single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Self-assembly synthesis of mixed-ligand (silsesquioxane/acetate) complex allows to isolate record high nuclear copper(II) Cu-cage (1). In the presence of two additional sodium ions, a unique molecular architecture, with triple combination of ligands (cyclic and acyclic silsesquioxanes as well as acetates), has been formed. The structure was established by single-crystal X-ray diffraction based on the use of synchrotron radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!