Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase, whose activity is inhibited by AKT phosphorylation. This inhibitory phosphorylation of GSK3β can in turn play a regulatory role through phosphorylation of several proteins (such as mTOR, elF2B) to promote protein synthesis. mTOR is a key regulator in protein synthesis and cell proliferation, and recent studies have shown that both GSK3β and mTORC1 can regulate SREBP1 to promote fat synthesis. Thus far, however, the cross talk between GSK3β and the mTOR pathway in the regulation of milk synthesis and associated cell proliferation is not well understood. In this study the interrelationship between GSK3β and the mTOR/S6K1 signaling pathway leading to milk synthesis and proliferation of dairy cow mammary epithelial cells (DCMECs) was analyzed using techniques including GSK3β overexpression by transfection, GSK3β inhibition, mTOR inhibition and methionine stimulation. The analyses revealed that GSK3β represses the mTOR/S6K1 pathway leading to milk synthesis and cell proliferation of DCMECs, whereas GSK3β phosphorylation enhances this pathway. Conversely, the activated mTOR/S6K1 signaling pathway downregulates GSK3β expression but enhances GSK3β phosphorylation to increase milk synthesis and cell proliferation, whereas inhibition of mTOR leads to upregulation of GSK3β and repression of GSK3β phosphorylation, which in turn decreases milk synthesis, and cell proliferation. These findings indicate that GSK3β and phosphorylated GSK3β regulate milk synthesis and proliferation of DCMECs via the mTOR/S6K1 signaling pathway. These findings provide new insight into the mechanisms of milk synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271057 | PMC |
http://dx.doi.org/10.3390/molecules19079435 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:
This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Considering the widespreadly use, large consumption, and serious environmental and health threats of phenylpyrazole insecticides (PPIs), development of a selective and sensitive method for accurate detection of their residuals in food samples is of great significance and challenging. Herein, depending on the hydrophobic and F-containing characteristics of PPIs, a novel fluorinated magnetic microporous organic network (FMMON) was designed and prepared for efficient and selective magnetic solid-phase extraction (MSPE) of two typical PPIs (fipronil and ethiprole) from milk and egg samples before the HPLC-UV determination. FMMON owned large specific surface area, multiple interaction sites, excellent magnetic separation performance and stability and exhibited good extraction and selectivity for fipronil and ethiprole through the specific F-F, hydrogen bonding, hydrophobic, and π-π interactions.
View Article and Find Full Text PDFNutrients
January 2025
Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China.
Background: Brussels chicory affluent in phenolic acids could inhibit atherosclerosis; however, its effects on exercise performance and post-exercise recovery are unknown. We hypothesized that Brussels chicory could enhance exhaustive aerobic exercise performance and post-exercise recovery by promoting lactate oxidation.
Methods: This is a single-blind, randomized, placebo-controlled two-way cross-over trial involving 32 untrained college students (men 18) who consumed either Brussels chicory juice (100 g of Brussels chicory containing ~130 mg phenolic acids and 180 mL fresh milk) or placebo (180 mL fresh milk) for 7 days with a 2-week washout period.
Molecules
January 2025
Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland.
The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow's milk. The analysis included natural yogurts and yogurts enriched with 10% of chia seeds, hulled hemp seeds, quinoa seeds and oat bran. The fatty acid composition, the content of lipid quality indicators and the content of mineral components was varied in all analyzed yogurts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use of statins. Based on this idea, in the present study, we identified peptides that inhibited PL by virtual screening and in vitro activity assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!