Magnetic fields markedly affect the growth and development of many species of organisms potentially due to cryptochrome and endogenous presence of magnetic materials. Sensitivity to magnetic fields can also be involved in geomagnetic orientation by some long-distance migratory insects. In this study, near-zero magnetic fields (NZMF) in relation to normal geomagnetic fields (GMF) were setup using the Hypomagnetic Field Space System (HMFs) to investigate the effects of magnetic fields on the growth, development and reproduction of two species of migratory planthopper, the small brown planthopper (abbr. SBPH), Laodelphax striatellus, and the brown planthopper (abbr. BPH), Nilaparvata lugens. Exposure of both L. striatellus and N. lugens to NZMF delayed egg and nymphal developmental durations and decreased adult weight and female fecundity. The 1st-5th instars of SBPH and BPH showed different responses to NZMF. The 4th instar was significantly affected by NZMF, especially for BPH males, in which NZMF exposure reduced the difference in development duration between females and males. Compared with GMF, the vitellogenin transcript levels of newly molted female adults and the number of eggs per female were significantly reduced in both planthopper species, indicating a negative effect on fertility under NZMF. Our findings provided experimental evidence that NZMF negatively affected the growth and development of SBPH and BPH, with particularly strong effects on reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2014.06.016DOI Listing

Publication Analysis

Top Keywords

magnetic fields
20
growth development
16
brown planthopper
16
near-zero magnetic
8
fields growth
8
development reproduction
8
small brown
8
laodelphax striatellus
8
striatellus brown
8
nilaparvata lugens
8

Similar Publications

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Coherent manipulation of photochemical spin-triplet formation in quantum dot-molecule hybrids.

Nat Mater

January 2025

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!