Ultrasound (US)-powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver-gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near-infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound-driven transport of the loaded drug toward cancer cells followed by NIR-light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20-fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US-powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target-specific manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201401013 | DOI Listing |
Biosens Bioelectron
December 2024
State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:
Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Genetics Department, Institut Curie, Paris, France.
Background: Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Xi'an Chest Hospital, Xi'an, Shaanxi Province, China.
Objectives: This study evaluates the effectiveness of nanopore sequencing for accurate detection of Mycobacterium tuberculosis pathogens and drug resistance mutations in clinical specimens.
Methods: A retrospective analysis of 2,421 specimens from suspected tuberculosis patients admitted to Xi'an Chest Hospital from 2022 to 2023 was conducted, with 131 specimens undergoing via real-time, fluorescence-based quantitative Polymerase Chain Reaction (qPCR), simultaneous amplification and testing RNA (RNA), Mycobacterium culture, Mycobacterium smear, and nanopore sequencing. Employing clinical tuberculosis diagnoses as the gold standard, sensitivity, specificity, positive predictive value, negative predictive value, concordance rate, and Kappa coefficient were measured for the five detection techniques.
Biosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
December 2024
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Objective: Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!