The common pasture earthworm Aporrectodea caliginosa has often been neglected in environmental metabolomics in favor of species easily bred in the laboratory. The present study assigns aqueous metabolites in A. caliginosa using high-resolution 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. In total, 51 aqueous metabolites were identified, including typical amino acids (alanine, leucine, asparagine, phenylalanine), sugars (maltose, glucose), the dominant earthworm-specific 2-hexyl-5-ethyl-furansulfonate, and several previously unreported metabolites (oxoglutarate, putrescine). Examining the lesser-known earthworm lipid metabolome showed various lipid fatty acyl chains, cholesterol, and phosphatidylcholine. To briefly test if the NMR metabolomic techniques could differentiate A. caliginosa from different sites, earthworms were collected from 2 adjacent farms. Orthogonal partial least squares discriminant analysis detected metabolomic differences, suggesting the worms from the 2 sites differed in their energy metabolism, as indicated by altered levels of alanine, glutamine, glutamate, malate, fumarate, and lipids. Evidence of greater utilization of lipid energy reserves and onset of protein catabolism was also present. While the precise cause of the metabolomic differences could not be determined, the results show the potential of this species for further environmental metabolomic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2680DOI Listing

Publication Analysis

Top Keywords

nuclear magnetic
8
magnetic resonance
8
earthworm aporrectodea
8
aporrectodea caliginosa
8
species environmental
8
environmental metabolomics
8
aqueous metabolites
8
metabolomic differences
8
metabolomic
5
aqueous lipid
4

Similar Publications

Giant Granular Cell Tumor of the Left Thigh, a Rare Case Report and Literature Review.

Orthop Res Rev

January 2025

Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, People's Republic of China.

Background: Granular cell tumor (GCT) is a rare soft tissue tumor characterized by Schwann cell differentiation. While GCT can occur in any part of the body, it is less common in the lower limbs. We report a case of a giant atypical GCT located in the left thigh, the tumor was initially small and painless at the time of discovery but gradually grew to 17 cm over a two-year period.

View Article and Find Full Text PDF

Cardiac masses encompass a diverse range of benign and malignant tumors as well as pseudotumors. Accurate histologic identification is essential for guiding appropriate treatment, yet the diagnostic process remains challenging. Although biopsy is traditionally the diagnostic gold standard, its invasive nature and associated risks limit its application.

View Article and Find Full Text PDF

There is increasing interest in studying molecular motions in ionic liquids to gain better insights into their transport properties and to expand their applications. In this study, we have employed the fast field cycling relaxometry and pulsed field gradient nuclear magnetic resonance techniques to investigate the rotational and translational dynamics of fluorinated imide-based ionic liquids (ILs) at different temperatures. We have studied a total of six ILs composed of the 1-butyl-3-methylimidazolium cation ([BMIM]) combined with chemically modified analogs of the bis((trifluoromethyl)sulfonyl)imide anion ([NTf] or [TFSI]).

View Article and Find Full Text PDF

Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.

View Article and Find Full Text PDF

Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!