Scope: Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics.

Methods And Results: We evaluated whether Lactobacillus delbrueckii subsp. delbrueckii TUA4408L (Ld) or its extracellular polysaccharide (EPS): acidic EPS (APS) and neutral EPS (NPS), modulated the response of porcine intestinal epitheliocyte (PIE) cells against Enterotoxigenic Escherichia coli (ETEC) 987P. The roles of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effects were also studied. ETEC-induced inflammatory cytokines were downregulated when PIE cells were prestimulated with both Ld or EPSs. Ld, APS, and NPS inhibited ETEC mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation by upregulating TLR negative regulators. The capability of Ld to suppress inflammatory cytokines was diminished when PIE cells were blocked with anti-TLR2 antibody, while APS failed to suppress inflammatory cytokines when cells were treated with anti-TLR4 antibody. Induction of Ca²⁺ fluxes in TLR knockdown cells confirmed that TLR2 plays a principal role in the immunomodulatory action of Ld, while the activity of APS is mediated by TLR4. In addition, NPS activity depends on both TLR4 and TLR2.

Conclusion: Ld and its EPS have the potential to be used for the development of anti-inflammatory functional foods to prevent intestinal diseases in both humans and animals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201400218DOI Listing

Publication Analysis

Top Keywords

pie cells
12
inflammatory cytokines
12
lactobacillus delbrueckii
8
delbrueckii tua4408l
8
tua4408l extracellular
8
enterotoxigenic escherichia
8
response porcine
8
porcine intestinal
8
tlr negative
8
negative regulators
8

Similar Publications

Summer Ostreopsis blooms in San Sebastian (South-East Bay of Biscay): The importance of substrate features.

Mar Pollut Bull

December 2024

Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE-UPV/EHU), Plentzia 48620, Spain.

During summer 2020 and 2021, harmful episodes of Ostreopsis were first reported in the Bay of Biscay, affecting the Spanish Basque coast, specifically the city of San Sebastian. This led to implement samplings during summer 2022 and 2023 within this region; two close sites distinguished, primarily, by their substrate features were selected. The abundances of Ostreopsis spp.

View Article and Find Full Text PDF

In the pursuit of enhancing cancer treatment efficacy while minimizing side effects, near-infrared (NIR) photothermal therapy (PTT) has emerged as a promising approach. By using photothermally active nanomaterials, PTT enables localized hyperthermia, effectively eliminating cancer cells with minimal invasiveness and toxicity. Among these nanomaterials, gold nanostars (AuNS) stand out due to their tunable plasmon resonance and efficient light absorption.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved.

View Article and Find Full Text PDF

Cooking parameters elaborated in the U.S. Department of Agriculture's Food Safety and Inspection Service Cooking Guideline for Meat and Poultry Products (Appendix A) were evaluated for inactivation of Salmonella spp.

View Article and Find Full Text PDF

Unlabelled: This work presents a multi-hurdle approach that addresses antimicrobial resistance by minimizing the selective pressure of antimicrobials using a novel colicinogenic-phage system. We have created two synthetic T7 phages (T7-E1 and T7-M) by inserting the gene of colicin E1 (Cea) or colicin M (Cma) into the genome of the T7 phage, thereby adding an additional colicin-based hurdle to the T7 lytic cycle. The colicin-phages' efficacy in suppressing the outgrowth of a T7-resistant sub-population within a mixed culture of was demonstrated using a challenge matrix design under planktonic and structured conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!