Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd(2+) and Ca(2+) plus Pi as the pore inducers. We found that Ca(2+) plus Pi induced the high-amplitude swelling of the isolated "winter" mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd(2+) did not produce the mitochondrial swelling in these media. Low Cd(2+) enhanced the inhibition of basal respiration rate of the "winter" mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd(2+) or Ca(2+) plus Pi in the "winter" mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the "spring" lamprey liver mitochondria, we revealed that Cd(2+) produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065708 | PMC |
http://dx.doi.org/10.1155/2014/691724 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!