Unlabelled: Cystathionine β-synthase (CBS) catalyzes metabolic reactions that convert homocysteine to cystathionine. To assess the role of CBS in human glioma, cells were stably transfected with lentiviral vectors encoding shRNA targeting CBS or a nontargeting control shRNA, and subclones were injected into immunodeficient mice. Interestingly, decreased CBS expression did not affect proliferation in vitro but decreased the latency period before rapid tumor xenograft growth after subcutaneous injection and increased tumor incidence and volume following orthotopic implantation into the caudate-putamen. In soft-agar colony formation assays, CBS knockdown subclones displayed increased anchorage-independent growth. Molecular analysis revealed that CBS knockdown subclones expressed higher basal levels of the transcriptional activator hypoxia-inducible factor 2α (HIF2α/EPAS1). HIF2α knockdown counteracted the effect of CBS knockdown on anchorage-independent growth. Bioinformatic analysis of mRNA expression data from human glioma specimens revealed a significant association between low expression of CBS mRNA and high expression of angiopoietin-like 4 (ANGPTL4) and VEGF transcripts, which are HIF2 target gene products that were also increased in CBS knockdown subclones. These results suggest that decreased CBS expression in glioma increases HIF2α protein levels and HIF2 target gene expression, which promotes glioma tumor formation.

Implications: CBS loss-of-function promotes glioma growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274393PMC
http://dx.doi.org/10.1158/1541-7786.MCR-14-0184DOI Listing

Publication Analysis

Top Keywords

cbs knockdown
16
promotes glioma
12
knockdown subclones
12
cbs
11
cystathionine β-synthase
8
human glioma
8
decreased cbs
8
cbs expression
8
anchorage-independent growth
8
hif2 target
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!