PTEN deficiency mediates a reciprocal response to IGFI and mTOR inhibition.

Mol Cancer Res

Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Published: November 2014

Unlabelled: Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing sarcoma, a highly malignant bone and soft-tissue tumor that primarily affects children and young adults. Despite promising results from preclinical studies of therapies that target this pathway, early-phase clinical trials have shown that a significant fraction of patients do not benefit, suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors, PTEN deficiency was observed in a large subset of cases, although not mediated by large chromosomal deletions. PTEN loss resulted in hyperactivation of the AKT signaling pathway. PTEN rescue led to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, PTEN loss decreased sensitivity to IGF1R inhibitors but increased responsiveness to temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results suggest that PTEN is lost in a significant fraction of primary tumors, and this deficiency may have therapeutic consequences by concurrently attenuating responsiveness to IGF1R inhibition while increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients with recurrent disease could help guide the selection of therapies.

Implications: PTEN status in Ewing sarcoma affects cellular responses to IGFI and mTOR-directed therapy, thus justifying its consideration as a biomarker in future clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233155PMC
http://dx.doi.org/10.1158/1541-7786.MCR-14-0006DOI Listing

Publication Analysis

Top Keywords

ewing sarcoma
12
pten
9
pten deficiency
8
clinical trials
8
primary tumors
8
pten loss
8
pten status
8
deficiency mediates
4
mediates reciprocal
4
reciprocal response
4

Similar Publications

Human cancer cell lines are the mainstay of cancer research. Recent reports showed that highly mutated adult carcinoma cell lines (mainly HeLa and MCF-7) present striking diversity across laboratories and that long-term continuous culturing results in genomic/transcriptomic heterogeneity with strong phenotypical implications. Here, we hypothesize that oligomutated pediatric sarcoma cell lines mainly driven by a fusion transcription factor, such as Ewing sarcoma (EwS), are genetically and phenotypically more stable than the previously investigated adult carcinoma cell lines.

View Article and Find Full Text PDF

Ewing's sarcoma of the head and neck: differential diagnosis, treatment and outcomes.

Curr Opin Otolaryngol Head Neck Surg

December 2024

Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, HBNI, Parel, Mumbai.

Purpose Of Review: Ewing's sarcoma is a small round-cell tumour typically arising in the bones, and only rarely affecting soft tissues. These are rarely seen in the head and neck comprising 1-9% of all cases, making management of these tumours a challenge. This review aims to review the current literature to update the current diagnostic and treatment options in head and neck Ewing's sarcoma.

View Article and Find Full Text PDF

Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches.

View Article and Find Full Text PDF

Germline structural variants are a risk factor for pediatric extracranial solid tumors.

View Article and Find Full Text PDF

Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!