Aiming at the identification of an efficient computational protocol for the accurate NMR assessment of organosilanes in low-polarity organic solvents, (29)Si NMR chemical shifts of a selected set of such species relevant in organic synthesis have been calculated relative to tetramethylsilane (TMS, 1) using selected density functional and perturbation theory methods. Satisfactory results are obtained when using triple zeta quality basis sets such as IGLO-III. Solvent effects impact the calculated results through both, changes in substrate geometry as well as changes in the actual shieldings. Spin-orbit (SO) corrections are required for systems carrying more than one chlorine atom directly bonded to silicon. Best overall results are obtained using gas phase geometries optimized at MPW1K/6-31+G(d) level in combination with shielding calculations performed at MPW1K/IGLO-III level in the presence of the PCM continuum solvation model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp01736f | DOI Listing |
J Magn Reson
December 2024
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:
The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.
View Article and Find Full Text PDFJ Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Diffusion limitations and monofunctional acidity of ZSM-5 molecular sieves affect the catalyst stability and aromatic yield in the reaction of methanol to aromatics (MTA). In this study, based on ZSM-5 nanosheets as parent molecular sieves, Zn-modified hollow ZSM-5 nanosheets were obtained after hydrothermal treatment by adding ZIF-8 or zinc nitrate as a source of Zn while treating with different types and concentrations of alkali solutions. The physical and chemical properties of the fabricated samples and their catalytic performance of methanol aromatization were systematically investigated by a combination of XRD, TEM, N adsorption-desorption, NH-TPD, Py-IR, Al MAS NMR, Si MAS NMR, XPS, and TG characterization analyses and MTA experimental evaluation.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Materials Science and Engineering, University of California, Davis, California 95616, United States.
Silicate-based adsorbents offer significant advantages over traditional materials, particularly due to their superior thermal and chemical stability, enhanced regenerability, and the ability to endure more rigorous operating conditions. In this study, an amorphous Na-Ca-magnesium silicate adsorbent (SAAM) and its g-CN-modified counterpart (gCN-SAAM) were synthesized via alkali activation and a subsequent thermal process, respectively. The g-CN modification resulted in a novel hybrid adsorbent with a remarkable methylene blue (MB) adsorption capacity of 420 mg g, four times higher than the unmodified sample, setting a new benchmark.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Redeemer University, Ancaster, ON, Canada.
A modified shifted-echo PIETA pulse sequence is developed to acquire natural abundance Si 2D -resolved spectra in crystalline silicates. The sequence is applied to the highly siliceous zeolites Sigma-2 and ZSM-12. The 2D -resolved spectra are used to develop a silicate framework structure refinement strategy based on Si-O, O-O, and Si-Si distance restraints and analytical relationships between local structure and Si chemical shifts and geminal couplings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!