UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156089PMC
http://dx.doi.org/10.1074/jbc.M114.580803DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
12
insulin secretion
12
receptor p2y14
8
insulin release
8
smooth muscle
8
udp sugars
8
p2y14
6
insulin
6
p2y14 influences
4
influences insulin
4

Similar Publications

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Background/aim: The five members of the mammalian muscarinic acetylcholine receptor family are encoded by the cholinergic receptor, muscarinic, 1-5 (CHRM1-5) genes. CHRM genes are incriminated in formation of various cancer types, but their roles in head and neck squamous cell carcinoma (HNSCC) are improperly understood. Aberrant epigenetic modifications of specific tumor-suppressor genes and oncogenes are known to promote cancer development.

View Article and Find Full Text PDF

Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet.

View Article and Find Full Text PDF

Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer.

Int Immunopharmacol

December 2024

Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China. Electronic address:

Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies.

View Article and Find Full Text PDF

Higher-order transient membrane protein structures.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.

This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!