In this review we will discuss different ways for re-establishing serotonergic activity that can enhance recovery of coordinated plantar stepping after spinal cord injury in adult rats. It is well known that serotoninergic neurons located in the medulla are able to initiate locomotor activity. This effect is exerted by actions on motoneurons and on neurons of the locomotor CPG (Central Pattern Generator). Motoneuron and interneuron excitability is increased, and putative CPG interneurons display oscillatory behaviour in response to serotonin receptor activation. The medullary serotonergic nuclei play multiple roles in the control of locomotion, and they terminate on specific target neurons with different types of serotonergic receptors in the spinal cord. Activation of these serotonergic receptors can restore locomotor movements after spinal cord injury. Specifically, using defined serotonergic agonists the 5-HT2 receptors can be stimulated to control CPG activation as well as motoneuron output, while 5-HT7 receptors to control activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. The other possibility to encourage the remaining spinal cord circuitry below the total transection to control recovery of plantar hindlimb stepping is restoration of serotonergic innervation by intraspinal grafting of embryonic 5-HT neurons. Our data show that grafting of different populations of 5-HT neurons dissected from embryonic brainstem provides differential control over multiple components of the spinal locomotor circuitry through specific serotonin receptors. Moreover, we demonstrated that the best effect of motor recovery is obtained after grafting of neurons destined to form the B1, B2 and B3 descending 5-HT systems. Using only one of the subpopulations for intraspinal grafting, for example, B3 or the lateral group of 5-HT neurons, induces only partial recovery of plantar stepping with a clear lack of proper interlimb coordination. This confirms the hypothesis that transplantation of 5-HT neurons from specific embryonic sources is necessary to obtain optimal recovery of locomotor hindlimb movement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.55782/ane-2014-1983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!