Introduction: MAPK genes are activated by a variety of factors related to growth factors, hormones, and environmental stress.

Methods: We evaluated associations between 13 MAPK genes and survival among 1,187 nonHispanic White and 1,155 Hispanic/Native American (NA) women diagnosed with breast cancer. We assessed the influence of diet, lifestyle, and genetic ancestry on these associations. Percent NA ancestry was determined from 104 Ancestry Informative Markers. Adaptive rank truncation product (ARTP) was used to determine gene and pathway significance.

Results: Associations were predominantly observed among women with lower NA ancestry. Specifically, the mitogen-activated protein kinases (MAPK) pathway was associated with all-cause mortality (P ARTP = 0.02), but not with breast cancer-specific mortality (P ARTP = 0.10). However, MAP2K1 and MAP3K9 were associated with both breast cancer-specific and all-cause mortality. MAPK12 (P ARTP = 0.05) was only associated with breast cancer-specific mortality, and MAP3K1 (P ARTP = 0.02) and MAPK1 (P ARTP = 0.05) were only associated with all-cause mortality. Among women with higher NA ancestry, MAP3K2 was significantly associated with all-cause mortality (P ARTP = 0.04). Several diet and lifestyle factors, including alcohol consumption, caloric intake, dietary folate, and cigarette smoking, significantly modified the associations with MAPK genes and all-cause mortality.

Conclusions: Our study supports an association between MAPK genes and survival after diagnosis with breast cancer, especially among women with low NA ancestry. The interaction between genetic variation in the MAPK pathway with diet and lifestyle factors for all women supports the important role of these factors for breast cancer survivorship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156917PMC
http://dx.doi.org/10.1007/s10552-014-0426-yDOI Listing

Publication Analysis

Top Keywords

mapk genes
20
diet lifestyle
16
breast cancer
16
all-cause mortality
16
lifestyle factors
12
associated all-cause
12
breast cancer-specific
12
associations mapk
8
genes survival
8
mapk pathway
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Trifolirhizin: A Phytochemical with Multiple Pharmacological Properties.

Molecules

January 2025

Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

Trifolirhizin is an important flavonoid glycoside reported from the roots of medicinal plants such as Astragalus membranaceus, Sophora tonkinensis, Ononis vaginalis, Euchresta formosana, Sophora Subprostrate, Ononis spinose, and Sophora flavescens. It is considered one of the important constituents responsible for the various medicinal properties of these medicinal plants. Studies have revealed the multiple pharmacological properties of trifolirhizin: anti-inflammatory, antioxidant, antibacterial, anti-ulcerative colitis, antiasthma, hepatoprotective, osteogenic, skin-whitening, wound-healing, and anticancer (against various types of cancers).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!