Quick contrast sensitivity measurements in the periphery.

J Vis

Department of Applied Physics, Biomedical and X-ray Physics, Royal Institute of Technology, Stockholm, Sweden.

Published: July 2014

Measuring the contrast sensitivity function (CSF) in the periphery of the eye is complicated. The lengthy measurement time precludes all but the most determined subjects. The aim of this study was to implement and evaluate a faster routine based on the quick CSF method (qCSF) but adapted to work in the periphery. Additionally, normative data is presented on neurally limited peripheral CSFs. A peripheral qCSF measurement using 100 trials can be performed in 3 min. The precision and accuracy were tested for three subjects under different conditions (number of trials, peripheral angles, and optical corrections). The precision for estimates of contrast sensitivity at individual spatial frequencies was 0.07 log units when three qCSF measurements of 100 trials each were averaged. Accuracy was estimated by comparing the qCSF results with a more traditional measure of CSF. Average accuracy was 0.08 log units with no systematic error. In the second part of the study, we collected three CSFs of 100 trials for six persons in the 20° nasal, temporal, inferior, and superior visual fields. The measurements were performed in an adaptive optics system running in a continuous closed loop. The Tukey HSD test showed significant differences (p < 0.05) between all fields except between the nasal and the temporal fields. Contrast sensitivity was higher in the horizontal fields, and the inferior field was better than the superior. This modified qCSF method decreases the measurement time significantly and allows otherwise unfeasible studies of the peripheral CSF.

Download full-text PDF

Source
http://dx.doi.org/10.1167/14.8.3DOI Listing

Publication Analysis

Top Keywords

contrast sensitivity
16
100 trials
12
measurement time
8
log units
8
nasal temporal
8
qcsf
5
quick contrast
4
sensitivity
4
sensitivity measurements
4
measurements periphery
4

Similar Publications

Statoliths function in gravity perception in plants: yes, no, yes!

Planta

January 2025

Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.

The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.

View Article and Find Full Text PDF

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

Efficacy of 4-dimensional hysterosalpingo-contrast sonography and X-ray hysterosalpingography in infertility.

Pak J Med Sci

January 2025

Ruichao Miao Department of Reproductive Center, Qingdao Women and Children's Hospital, Qingdao, Shandong Province 266000, P.R. China.

Objective: To assess and compare efficacy of 4-dimensional hysterosalpingo-contrast sonography (4D-HyCoSy) and X-ray hysterosalpingography (HSG) for fallopian tube examination.

Methods: Clinical data of patients with suspected tubal infertility, who underwent examinations in Qingdao Women and Children's Hospital from September 2021 to December 2023, were retrospectively analyzed. Of them, 40 patients received laparoscopy and dye test+ 4D-HyCoSy (4D-HyCoSy group), and 36 patients received laparoscopy and dye test +HSG (HSG group).

View Article and Find Full Text PDF

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

This meta-analysis investigates the potential of allopurinol to prevent contrast-induced nephropathy (CIN), a common and serious complication of percutaneous coronary intervention (PCI). CIN is particularly prevalent among high-risk populations, including patients with chronic kidney disease (CKD) or acute coronary syndrome (ACS), where the administration of contrast agents can exacerbate renal injury. Allopurinol, a xanthine oxidase inhibitor, is known for its dual action in reducing oxidative stress and uric acid production, positioning it as a promising therapeutic candidate to mitigate CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!