Postconditioning (PostC) activates endogenous protective mechanisms that contend against reperfusion injury. Nevertheless, although PostC efficiency in both experimental studies and clinical trials has been demonstrated, a complete picture of the interacting mechanisms, particularly the relationship between kinase signaling and redox maintenance, is still lacking. To unravel such association, in this work we focus on the participation of protein kinase C (PKC) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) in the cardioprotective response elicited by PostC. PostC was performed in an in vivo rat model by applying three repetitive cycles of ischemia and reperfusion (10 s each), followed by evaluation of heart function and infarct size measurements. PKC activation and Nrf2 phosphorylation were evaluated after 10 min of reperfusion, whereas Nrf2 activity and the content and activities of Nrf2-regulated antioxidant proteins were evaluated after 60 min of reperfusion in PostC hearts. Maintenance of heart function and diminution in infarct size concurred with PKC activation and Nrf2 phosphorylation. PKC inhibition diminished Nrf2 phosphorylation and transcriptional activity in association with diminished levels and activities of Nrf2-regulated antioxidant proteins. In conclusion, this study proposes that the novel pathway PKC/Nrf2 participates in the long-term protective mechanisms induced by PostC application by maintaining the antioxidant defense system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.021 | DOI Listing |
Plants (Basel)
November 2024
Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea.
Toxicol Appl Pharmacol
January 2025
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India. Electronic address:
The Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2 related factor 2/Antioxidant Response Elements (Keap1/Nrf2/ARE) pathway is essential for neuronal resilience against the complex pathogenesis of Parkinson's disease (PD). Activating this pathway by covalently modifying Keap1 cysteine residues is a promising strategy for regulating neuroprotective gene expression. Our study aimed to identify phytochemicals that could irreversibly inhibit Keap1.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Severe acute pancreatitis (SAP) is an acute inflammatory injury disease with significant mortality rate and currently without effective strategy being available. Inflammation and oxidative stress play central roles in the etiology of SAP. Micheliolide (MCL), an active monomeric component isolated from Michelia champaca, has been proved its multiple therapeutic properties including anti-inflammatory, antioxidant and anti-cancer.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
Drug resistance is one of the major obstacles to the clinical use of doxorubicin, an extensively used chemotherapeutic drug to treat various cancers, including leukemia. Inhibition of the nuclear factor erythroid 2-related factor 2 (NRF2) seems a promising strategy to reverse chemoresistance in cancer cells. NRF2 is a transcription factor that regulates both antioxidant defense and drug detoxification mechanisms.
View Article and Find Full Text PDFBull Exp Biol Med
July 2024
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
We studied the expression of Nrf2 transcription factor and antioxidant system proteins in drug-resistant murine leukemia strains P388 in vivo, as well as the redox status of cells under conditions of induced oxidative stress. Immunoblotting and real-time PCR showed that the cyclophosphamide-resistant strain P388 (P388/CP) exhibits Nrf2-mediated drug resistance. Cells of the P388/CP strain are characterized by high expression of Nrf2, which leads to a significant increase in the expression of ARE genes and antioxidant system proteins, as well as to the effective maintenance of redox homeostasis under conditions of induced oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!