MQ NMR dynamics in dipolar ordered state at negative temperature.

Solid State Nucl Magn Reson

Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel.

Published: March 2015

We investigate theoretically the Multiple Quantum (MQ) NMR dynamics at negative absolute temperatures in systems of nuclear spins 1/2 coupled by the dipole-dipole interactions and with the initial conditions determined by the dipolar ordered state. Two different methods of MQ NMR are used. One of them is based on the measurement of the dipolar energy. The other method uses an additional resonance (π/4)y-pulse after the preparation period of the standard MQ NMR experiment. It is shown that at negative temperatures many-spin clusters and spin correlations are created faster, and the intensities of MQ coherences are higher than in the usual MQ NMR experiments. So, the eighth-order MQ coherence in 10-spin system of the cyclopentane molecule appears to be 1.5 times faster and its intensity is four orders higher than at positive temperatures. The proposed MQ NMR methods at negative absolute temperatures can be used for the investigation of many-spin dynamics of nuclear spins in solids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ssnmr.2014.05.004DOI Listing

Publication Analysis

Top Keywords

nmr dynamics
8
dipolar ordered
8
ordered state
8
negative absolute
8
absolute temperatures
8
nuclear spins
8
nmr
6
dynamics dipolar
4
negative
4
state negative
4

Similar Publications

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Peroneal tendon pathology is common among physically active individuals, with tenosynovitis, tendon subluxation, split tears and rupture. However, diagnosing these conditions, particularly peroneus brevis split tears, is clinically and radiologically challenging. Magnetic resonance imaging (MRI) and ultrasound (US) can sometimes miss split tears.

View Article and Find Full Text PDF

Purpose: We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes.

Methods: The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis.

View Article and Find Full Text PDF

Hereby inviting young rising stars in chest radiology in Japan for contributing what they are working currently, we would like to show the potentials and directions of the near future research trends in the research field. I will provide a reflection on my own research topics. At the end, we also would like to discuss on how to choose the themes and topics of research: What to do or not to do? We strongly believe it will stimulate and help investigators in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!