The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja505242c | DOI Listing |
Sci Rep
January 2025
Institute of Environment, Florida International University, Miami, FL, 33199, USA.
Variability in space use among conspecifics can emerge from foraging strategies that track available resources, especially in riverscapes that promote high synchrony between prey pulses and consumers. Projected changes in riverscape hydrological regimes due to water management and climate change accentuate the need to understand the natural variability in animal space use and its implications for population dynamics and ecosystem function. Here, we used long-term tracking of Common Snook (Centropomus undecimalis) movement and trophic dynamics in the Shark River, Everglades National Park from 2012 to 2023 to test how specialization in the space use of individuals (i.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nucleation and growth are studied in a system that undergoes diffusion-controlled condensation under gradual changes in parameters, such as cooling. It is demonstrated that when the Gibbs-Thompson effect becomes negligible, the system falls into a universal regime. i.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.
We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!