Biodegradable and multifunctional polymer micro-tubes for targeting photothermal therapy.

Int J Mol Sci

Food Science College, Northeast Agricultural University, 59 GongBin Road, XiangFang District, Harbin 150030, China.

Published: July 2014

We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample's temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139810PMC
http://dx.doi.org/10.3390/ijms150711730DOI Listing

Publication Analysis

Top Keywords

photothermal therapy
12
target cancer
12
cancer cells
12
polymer micro-tubes
8
soybean protein
8
protein isolate
8
isolate poly-l-glutamic
8
poly-l-glutamic acid
8
gold nanoparticles
8
infrared radiation
8

Similar Publications

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives.

Inorg Chem

January 2025

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Photothermal therapy is a promising strategy for treating tumors and bacterial infections by using light irradiation to locally heat tissues. Metalloisoporphyrinoid materials have been investigated for their use as singlet oxygen photosensitizers for photodynamic therapy but remain underexplored as photothermal agents. Recently, two metallophlorin and two metalloisocorrole materials were found to have strong near-infrared absorbance, with low photoluminescent quantum yields, suggesting high rates of nonradiative decay.

View Article and Find Full Text PDF

Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!