A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multifunctional Fe₃O₄@nSiO₂@mSiO₂-Fe core-shell microspheres for highly efficient removal of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) from aqueous media. | LitMetric

Multifunctional Fe₃O₄@nSiO₂@mSiO₂-Fe core-shell microspheres for highly efficient removal of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) from aqueous media.

J Colloid Interface Sci

Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China. Electronic address:

Published: October 2014

A novel multifunctional microsphere with an iron oxide-improved mesoporous silica shell and a Fe3O4@SiO2 core has been successfully prepared by a hydrothermal method and impregnation process. The resulting Fe3O4@nSiO2@mSiO2-Fe core-shell microspheres are utilized as a catalyst for the removal of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its derivatives, i.e., 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE). The results indicated that the iron oxide nanoparticles were well dispersed on the mesoporous silica shell of Fe3O4@nSiO2@mSiO2. DDT, DDD and DDE could be quickly and effectively removed from aqueous media in 60 min, and completely dechlorinated at 350°C by Fe3O4@nSiO2@mSiO2-Fe. More importantly, the Fe3O4@nSiO2@mSiO2-Fe microspheres were superparamagnetic and could be separated and collected easily and rapidly using a magnet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2014.06.009DOI Listing

Publication Analysis

Top Keywords

core-shell microspheres
8
aqueous media
8
mesoporous silica
8
silica shell
8
multifunctional fe₃o₄@nsio₂@msio₂-fe
4
fe₃o₄@nsio₂@msio₂-fe core-shell
4
microspheres highly
4
highly efficient
4
efficient removal
4
removal 111-trichloro-22-bis4-chlorophenylethane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!