Objective: The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill.

Materials And Methods: Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals.

Results: FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group.

Conclusions: The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2014.3711DOI Listing

Publication Analysis

Top Keywords

eryag laser
20
bone tissue
16
chemical crystallographic
8
crystallographic changes
8
changes bone
8
tunnel preparations
8
chemical elements
8
x-ray analysis
8
thermally induced
8
induced modifications
8

Similar Publications

Aim: To evaluate the shear bond strength (SBS) of ceramic and metallic orthodontic brackets bonded to lithium disilicate ceramics or hybrid ceramics and subjected to different surface conditioning treatments.

Materials And Methods: In total, 300 specimens were fabricated from GC LiSi (lithium disilicate) and GC Cerasmart (hybrid) ceramic blocks. The specimens were divided into four groups according to the following surface treatments: hydrofluoric acid (HF); sandblasting with 50 μm aluminum oxide; Monobond Etch and Prime; and erbium-doped yttrium aluminum garnet (Er-YAG) laser.

View Article and Find Full Text PDF

ER:YAG laser and experimental resin-based dental adhesive loaded with functionalized carbonated apatite filler were used in this study to evaluate the dentin interaction in terms of penetration and occlusion of the dentinal tubules aiding in the control of dentin hypersensitivity (DH). Spheroidal Carbonated apatite nanoparticles (N-CAP), with an average size of 20±5 nm diameter, were synthesized, characterized, and incorporated in a universal adhesive "All Bond Universal, Bisco, USA", in (2% weight) concentration. Er:YAG laser "Lightwalker, FOTONA, EU" was adjusted to an energy output of 40mJ/ pulse and pulse repetition of 10 Hz for 10 seconds.

View Article and Find Full Text PDF

Aim: The aim of the present study was to evaluate the efficacy of 30-angled Er:YAG laser tip and different periodontal instruments on root surface roughness and morphology in vitro.

Methods: Eighteen bovine teeth root without carious lesion were decoronated from the cementoenamel junction and seperated longitidunally. A total of 36 obtained blocks were mounted in resin blocks and polished with silicon carbide papers under water irrigation.

View Article and Find Full Text PDF
Article Synopsis
  • * Following her diagnosis, she had multiple dental extractions that led to bone exposure and complications, which were treated with photobiomodulation therapy and antimicrobial photodynamic therapy, resulting in improved clinical conditions.
  • * After removing necrotic bone with a specialized laser, the patient successfully received dental prosthetics and is currently being monitored, showing no signs of recurrence, indicating potential effectiveness of laser treatments for ORN.
View Article and Find Full Text PDF

Objective: Diabetic ulcers are a significant healthcare challenge, capable of diminishing quality of life, lengthening hospitalisation stay, and incurring substantial costs for patients and healthcare systems. Erbium-doped yttrium-aluminum-garnet (Er-YAG) laser has been evolving as a prospective intervention for addressing wounds of various aetiologies. Despite this, the literature remains limited in appraising the effectiveness of laser therapy specifically in diabetic wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!