Background And Purpose: The role of autophagy in response to ischemic stroke has been confusing with reports that both enhancement and inhibition of autophagy decrease infarct size and improve post-stroke outcomes. We sought to clarify this by comparing pharmacologic modulation of autophagy in two clinically relevant murine models of stroke.
Methods: We used rapamycin to induce autophagy, and chloroquine to block completion of autophagy, by treating mice immediately after stroke and at 24 hours post-stroke in two different models; permanent Middle Cerebral Artery Ligation (MCAL), which does not allow for reperfusion of distal trunk of middle cerebral artery, and Embolic Clot Middle Cerebral Artery Occlusion (eMCAO) which allows for a slow reperfusion similar to that seen in most human stroke patients. Outcome measures at 48 hours post-stroke included infarct size analysis, behavioral assessment using Bederson neurological scoring, and survival.
Results: Chloroquine treatment reduced the lesion size by approximately 30% and was significant only in the eMCAO model, where it also improved the neurological score, but did not increase survival. Rapamycin reduced lesion size by 44% and 50% in the MCAL and eMCAO models, respectively. Rapamycin also improved the neurological score to a greater degree than chloroquine and improved survival.
Conclusions: While both inhibition and enhancement of autophagy by pharmacological intervention decreased lesion size and improved neurological scores, the enhancement with rapamycin showed a greater degree of improvement in outcomes as well as in survival. The protective action seen with chloroquine may be in part due to off-target effects on apoptosis separate from blocking lysosomal activity in autophagy. We conclude pharmacologic induction of autophagy is more advantageous than its blockade in physiologically-relevant permanent and slow reperfusion stroke models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079187 | PMC |
http://dx.doi.org/10.1186/2040-7378-6-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!