Background: The diagnosis of prostate cancer involves invasive, sometimes harmful, procedures that can entail negative quality-of-life implications to individuals and high additional costs to the US healthcare system when these procedures result in retesting and iatrogenic harms. It is estimated that $1.86 billion is spent annually on prostate-specific antigen (PSA) testing alone. An advanced epigenetic molecular diagnostic test that uses methylation-specific polymerase chain reaction to assess the DNA methylation status of GSTP1, APC, and RASSF1 genes associated with oncogenesis enables a higher degree of accuracy (previously unattainable through prostate biopsy procedures alone) and produces clinical, financial, and health benefits by reducing the number of medically unnecessary and costly repeated biopsies that are part of today's standard of care.
Objectives: The purpose of this study is to quantify, using a budget impact model, the effect of a relatively new epigenetic assay on healthcare costs for commercial health plans that reimburse for the assay, by avoiding unnecessary repeated prostate biopsy procedures.
Methods: A budget impact model was developed to test the hypothesis that the epigenetic assay can produce cost-saving benefits to health plans, as well as clinical benefits to urologists and patients with prostate cancer, by providing guidance on how to offer patients more appropriate, and less costly, care. The budget impact model is presented from the perspective of a hypothetical commercial health plan, and direct costs are calculated over a 1-year time horizon, using 2013 Medicare fee-for-service rates. Using a plan of 1 million members, the model compares 1-year costs in a "reference scenario," in which the epigenetic assay is not used for the screening and diagnosis of prostate cancer, to costs in a "new scenario," in which the epigenetic assay is used to distinguish true-negative prostate biopsy results from false-negative biopsy results.
Results: Based on this analysis, administering the epigenetic assay to patients with histopathologically negative biopsies would result in a reduction of 1106 unnecessary biopsies for a health plan with 1 million members. The total 1-year cost of repeated prostate cancer biopsies to the health plan was found to be $2,864,142 in the reference scenario and $2,333,341 in the new scenario. This translates to a total budget impact, or an annual savings, of $530,801 to the plan. The total diagnostic cost was calculated to be $2584 per patient in the new scenario (using the genetic assay) compared with $3172 per patient in the reference scenario (that did not use the assay), resulting in a savings of $588 per patient management.
Conclusion: This analysis shows that the net cost to a commercial health plan with 1 million members would be reduced by approximately $500,000 if patients with histopathologically negative biopsies were managed with the use of the epigenetic assay to differentiate patients who should undergo repeated biopsy and those who should not. Using this genetic-based assay can save costs to health plans and to the US healthcare and improve the clinical management of patients with elevated PSA levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031702 | PMC |
Cardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFNat Aging
January 2025
Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.
DNA methylation marks have recently been used to build models known as epigenetic clocks, which predict calendar age. As methylation of cytosine promotes C-to-T mutations, we hypothesized that the methylation changes observed with age should reflect the accrual of somatic mutations, and the two should yield analogous aging estimates. In an analysis of multimodal data from 9,331 human individuals, we found that CpG mutations indeed coincide with changes in methylation, not only at the mutated site but with pervasive remodeling of the methylome out to ±10 kilobases.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.
View Article and Find Full Text PDFGene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
Background: LINC00323, a new long noncoding RNA, is aberrantly expressed in several cancers. However, the expression, function, and mechanism of LINC00323 in non-small cell lung cancer (NSCLC) are unclear.
Methods: In the present study, LINC00323, VEGFA, microvessel density (MVD), and AKAP1 levels were confirmed in NSCLC tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!