Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in Central Appalachia.

Environ Manage

Environmental Assessment and Innovation Division, Office of Monitoring and Assessment Region III, U.S. Environmental Protection Agency, 1060 Chapline St., Wheeling, WV, 26003, USA,

Published: October 2014

AI Article Synopsis

  • Recent studies reveal significant ecological harm in streams affected by mountaintop coal mining and valley fills (VF), with biological impairment evident even decades after reclamation.
  • Analysis of 15 reclaimed headwater streams showed that nearly 90% had degraded biological conditions, despite having seemingly good habitat.
  • The findings suggest that while regulations aim to restore land and protect water quality, substantial lasting damage to biological communities persists in these streams.

Article Abstract

Recent studies have documented adverse effects to biological communities downstream of mountaintop coal mining and valley fills (VF), but few data exist on the longevity of these impacts. We sampled 15 headwater streams with VFs reclaimed 11-33 years prior to 2011 and sampled seven local reference sites that had no VFs. We collected chemical, habitat, and benthic macroinvertebrate data in April 2011; additional chemical samples were collected in September 2011. To assess ecological condition, we compared VF and reference abiotic and biotic data using: (1) ordination to detect multivariate differences, (2) benthic indices (a multimetric index and an observed/expected predictive model) calibrated to state reference conditions to detect impairment, and (3) correlation and regression analysis to detect relationships between biotic and abiotic data. Although VF sites had good instream habitat, nearly 90 % of these streams exhibited biological impairment. VF sites with higher index scores were co-located near unaffected tributaries; we suggest that these tributaries were sources of sensitive taxa as drifting colonists. There were clear losses of expected taxa across most VF sites and two functional feeding groups (% scrapers and %shredders) were significantly altered. Percent VF and forested area were related to biological quality but varied more than individual ions and specific conductance. Within the subset of VF sites, other descriptors (e.g., VF age, site distance from VF, the presence of impoundments, % forest) had no detectable relationships with biological condition. Although these VFs were constructed pursuant to permits and regulatory programs that have as their stated goals that (1) mined land be reclaimed and restored to its original use or a use of higher value, and (2) mining does not cause or contribute to violations of water quality standards, we found sustained ecological damage in headwaters streams draining VFs long after reclamation was completed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-014-0319-6DOI Listing

Publication Analysis

Top Keywords

mining valley
8
valley fills
8
sites
5
long-term impacts
4
impacts macroinvertebrates
4
macroinvertebrates downstream
4
downstream reclaimed
4
reclaimed mountaintop
4
mountaintop mining
4
fills central
4

Similar Publications

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

In-channel sediment mining significantly disrupts reach-scale sediment connectivity and channel geometry, causing immediate and intense geomorphological responses. River systems perturbed by anthropogenic stress, like sand and gravel mining, tend to respond within a shorter timescale, making the study of feedback mechanisms important. 'Sensitive' rivers display dramatic change via a positive feedback mechanism, exacerbating the change in the system.

View Article and Find Full Text PDF

Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.

View Article and Find Full Text PDF

This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.

View Article and Find Full Text PDF

The 2024 Hualien M 7.4 earthquake struck the Longitudinal Valley, which accommodates the partial collision between the Eurasian and Philippine Sea plates. As the most significant event in Taiwan since the 1999 Chi-Chi M 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!