Recent developments in the field of photonic spin Hall effect (SHE) offer new opportunities for advantageous measurement of the optical parameters (refractive index, thickness, etc.) of nanostructures and enable spin-based photonics applications in the future. However, it remains a challenge to develop a tunable photonic SHE with any desired spin-dependent splitting for generation and manipulation of spin-polarized photons. Here, we demonstrate experimentally a scheme to realize the photonic SHE tunably by tailoring the space-variant Pancharatnam-Berry phase (PBP). It is shown that light beams whose polarization with a tunable spatial inhomogeneity can contribute to steering the space-variant PBP which creates a spin-dependent geometric phase gradient, thereby possibly realizing a tunable photonic SHE with any desired spin-dependent splitting. Our scheme provides a convenient method to manipulate the spin photon. The results can be extrapolated to other physical system with similar topological origins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080221 | PMC |
http://dx.doi.org/10.1038/srep05557 | DOI Listing |
Sci Adv
January 2025
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
A metamaterial absorber capable of swiftly altering its electromagnetic response in the microwave range offers adaptability to changing environments, such as tunable stealth capabilities. Inspired by the chameleon's ability to change color through the structural transformation of photonic lattice crystals, which shift the bandgaps of reflection and transmission of visible light, we designed a crisscross structure that transforms from an expanded to a collapsed form. This transformation enables a switch between broadband absorption and peak transmission in the microwave range (4 to 18 gigahertz).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.
In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration.
View Article and Find Full Text PDFSmall
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!