Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths.

Chemistry

National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5A4, 62500 Brno (Czech Republic).

Published: August 2014

Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, "misinterpretations" of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM's topological analysis of the one-electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the "interaction" to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed "line paths" in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some "problematic" molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new "interpretation" of data is performed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201402177DOI Listing

Publication Analysis

Top Keywords

chemical bonds
8
bonding analysis
8
qtaim analysis
8
topological analysis
8
role nuclear
8
nuclear vibrations
8
bond paths
8
presence/absence paths
8
chemical
6
paths
6

Similar Publications

Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.

View Article and Find Full Text PDF

Dynamic Boronic Ester Cross-Linked Polymers with Tunable Properties via Side-Group Engineering.

Polymers (Basel)

December 2024

Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

The development of dynamic covalent materials with repairability, reprocessability, and recyclability is crucial for sustainable development. In this work, we report a new strategy to adjust the thermomechanical properties of boronic ester cross-linked poly(β-hydroxyl amine)s through side-group engineering. By tuning the side groups of the poly(β-hydroxyl amine)s, we have developed self-healable, reprocessable, and shape-programmable materials.

View Article and Find Full Text PDF

Lignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/HO) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.

View Article and Find Full Text PDF

Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study.

Polymers (Basel)

December 2024

Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea.

In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength.

View Article and Find Full Text PDF

Interface Engineering of Styrenic Polymer Grafted Porous Micro-Silicon/Polyaniline Composite for Enhanced Lithium Storage Anode Materials.

Polymers (Basel)

December 2024

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.

Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!