Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions.

Download full-text PDF

Source
http://dx.doi.org/10.1504/IJBRA.2014.062999DOI Listing

Publication Analysis

Top Keywords

rare behaviours
16
stochastic differential
8
decision procedures
8
cell cycle
8
sde models
8
behaviours
5
discovering rare
4
behaviours stochastic
4
differential equations
4
equations decision
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!