Orientational order of one-patch colloidal particles in two dimensions.

Soft Matter

Department of Physics, Kyushu University, 812-8581 Fukuoka, Japan.

Published: October 2014

We studied the orientational order of one-patch colloidal particles (Janus particles) in a close-packed monolayer. In an experiment on hemispherically patched particles, we realized a highly ordered zigzag stripe pattern by inducing directional growth of the pattern via a phase transition of the solvent. Upon spontaneous ordering by strengthening the inter-patch attraction, however, the particles are trapped in a poorly ordered zigzag pattern, illustrating the importance of controlling kinetics to attain a highly ordered state. The patch-size dependence of an equilibrium orientational order is experimentally observed under moderate inter-patch attraction. We also calculated the equilibrium order against the patch size and attraction in a Monte Carlo simulation. In the simulation, the rather discrete transition between a zigzag stripe, tiling of triangular trimers and tiling of dimers under strong attraction becomes continuous with weakening attraction. The experimental result not only coincides with the simulation qualitatively but also suggests that a particular cluster is selectively formed by nonuniform inter-patch attraction in the experiment. The effect of patch-substrate attraction and commonalities of the order with liquid crystals are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm00932kDOI Listing

Publication Analysis

Top Keywords

orientational order
12
inter-patch attraction
12
order one-patch
8
one-patch colloidal
8
colloidal particles
8
highly ordered
8
ordered zigzag
8
zigzag stripe
8
attraction
7
particles
5

Similar Publications

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement.

Sensors (Basel)

December 2024

Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.

Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.

View Article and Find Full Text PDF

This paper deals with neuro-registration using tele-manipulation (Master-Slave Manipulation) to facilitate tele-surgery and enhance the overall accuracy and reach of the robot-assisted neurosurgery. Accurate Neuro-registration is important as the success of the surgical procedure highly depends on it. A 6-degree-of-freedom Parallel Kinematic Mechanism (6D-PKM) master-slave robot in tele-manipulation mode is utilized for both neuro-registration and neurosurgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!