A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. | LitMetric

The preservation of the bone-forming potential of skeletal progenitor cells during their ex vivo expansion remains one of the major challenges for cell-based bone regeneration strategies. We report that expansion of murine periosteal cells in the presence of FGF2, a signal present during the early stages of fracture healing, is necessary and sufficient to maintain their ability to organize in vivo into a cartilage template which gives rise to mature bone. Implantation of FGF2-primed cells in a large bone defect in mice resulted in complete healing, demonstrating the feasibility of using this approach for bone tissue engineering purposes. Mechanistically, the enhanced endochondral ossification potential of FGF2-expanded periosteal cells is predominantly driven by an increased production of BMP2 and is additionally linked to an improved preservation of skeletal progenitor cells in the cultures. This characteristic is unique for periosteal cells, as FGF2-primed bone marrow stromal cells formed significantly less bone and progressed exclusively through the intramembranous pathway, revealing essential differences between both cell pools. Taken together, our findings provide insight in the molecular regulation of fracture repair by identifying a unique interaction between periosteal cells and FGF2. These insights may promote the development of cell-based therapeutic strategies for bone regeneration which are independent of the in vivo use of growth factors, thus limiting undesired side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1783DOI Listing

Publication Analysis

Top Keywords

periosteal cells
16
progenitor cells
12
cells
9
expansion murine
8
murine periosteal
8
endochondral ossification
8
bone
8
skeletal progenitor
8
bone regeneration
8
periosteal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!