The aim of this study was to analyze the relationship between oolong tea drinking and bone mineral density in postmenopausal Han Chinese women, while living and diet habits, fertility, disease elements and other baseline conditions were controlled. One group included 124 cases who routinely drank oolong tea, and the other included 556 who did not drink tea. Data were collected on participant age, lifestyle habits, fertility condition, disease elements, and lumbar, and hip bone densities. It was found that the bone densities of the greater trochanteric bone in tea drinkers were higher (0.793 ± 0.119 kg/cm(2)) than that in non-tea drinkers (0.759 ± 0.116 kg/cm(2), F = 6.248, p = 0.013). Similarly, the bone density of Ward's triangular bone in tea drinkers was higher (0.668 ± 0.133 kg/cm(2)) than that in non-tea drinkers (0.637 ± 0.135 kg/cm(2), F = 6.152, p = 0.013). Oolong tea drinking could help prevent bone loss in postmenopausal Chinese women.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-014-0053-yDOI Listing

Publication Analysis

Top Keywords

oolong tea
16
tea drinking
12
chinese women
12
drinking help
8
help prevent
8
bone
8
prevent bone
8
bone loss
8
loss postmenopausal
8
postmenopausal han
8

Similar Publications

Development and industrial application of geographical origin identification for Taiwanese oolong tea.

J Food Drug Anal

December 2024

Tea and Beverage Research Station (TBRS), No.324, Chung-Hsing RD., Yangmei, Taoyuan City 326011, Taiwan, R.O.C.

Taiwanese oolong tea is renowned for its excellent quality and enjoys a prestigious reputation both domestically and internationally. In recent years, there has been an issue with imported Taiwanese-style oolong tea being sold as genuine Taiwanese oolong tea, which has adversely affected the brand value of Taiwanese oolong tea. In this study, samples of domestic oolong tea (Taiwanese oolong tea) and Taiwanese-style oolong tea produced abroad (including China, Vietnam, Indonesia, Thailand, etc.

View Article and Find Full Text PDF

Purpose: Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application.

View Article and Find Full Text PDF

Tea grading, blending, and matching based on computer vision and deep learning.

J Sci Food Agric

December 2024

School of Food and Biological Engineering, Jiangsu University, Jiangsu, People's Republic of China.

Background: Accurate tea blending assessment and sample matching are critical in the tea production process. Traditional methods face efficiency and accuracy challenges, which can be addressed by advances in computer vision and deep learning. This study developed an efficient and non-destructive method for fast tea grading classification, blending ratio evaluation, and sample matching.

View Article and Find Full Text PDF

Tea marinating-induced improvement of quality in roasted chicken: The potential relationship between tea, flavor, and hazardous substances.

Food Chem X

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

The levels of flavor compounds and hazardous compounds are important indicators for evaluating high-temperature roasted food. In this paper, the effect of tea pre-marination on non-volatile compounds, volatile compounds, and hazardous compounds in roasted chicken. The results showed that the total content of key umami non-volatile compounds in roasted chicken marinated with green tea, white tea, and black tea increased by 17.

View Article and Find Full Text PDF

Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier.

Food Res Int

January 2025

College of Food Science and Engineering, Jilin University, Changchun 130062, China. Electronic address:

The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!