Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5-55 kg).

Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF(organ)(SSDE)) were then multiplied by patient-specific SSDE to estimate patient organ dose. The [CF(organ)(SSDE)) were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5-55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results.

Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. Individual CF(organ)(SSDE) were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7-1.4) and abdominopelvic region (average 0.9; range 0.7-1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1-0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF(organ)(SSDE), was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0).

Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ± 10%. In addition, this study provides a complete list of organ dose correlation factors (CF(organ)(SSDE)) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148074PMC
http://dx.doi.org/10.1118/1.4884227DOI Listing

Publication Analysis

Top Keywords

organ dose
52
patient organ
24
organ
16
dose
16
patient
13
chest abdominopelvic
12
abdominopelvic region
12
scan volume
12
average range
12
size-specific dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!