Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment.

Methods: Template-based matching used a normalized cross-correlation with simplex minimization. Templates were created from computed tomography (CT) images for phantom studies and from end-expiration breath-hold planning CT for patient studies. The kV images were processed using a Sobel filter to enhance marker visibility. To correct for changes in intermarker relative positions between simulation and treatment that can introduce errors in automatic matching, marker offsets in three dimensions were manually determined from an approximately orthogonal pair of kV images. Two studies in anthropomorphic phantom were carried out, one using a gold cylindrical marker representing regular shape, another using a Visicoil marker representing irregular shape. Automatic matching of templates to cone beam CT (CBCT) projection images was performed to known marker positions in phantom. In patient data, automatic matching was compared to manual matching as an approximate ground truth. Positional discrepancy between automatic and manual matching of less than 2 mm was assumed as the criterion for successful tracking. Tracking success rates were examined in kV projection images from 22 CBCT scans of four pancreas, six gastroesophageal junction, and one lung cancer patients. Each patient had at least one irregularly shaped radiopaque marker implanted in or near the tumor. In addition, automatic tracking was tested in intrafraction kV images of three lung cancer patients with irregularly shaped markers during 11 volumetric modulated arc treatments. Purpose-built software developed at our institution was used to create marker templates and track the markers embedded in kV images.

Results: Phantom studies showed mean ± standard deviation measurement uncertainty of automatic registration to be 0.14 ± 0.07 mm and 0.17 ± 0.08 mm for Visicoil and gold cylindrical markers, respectively. The mean success rate of automatic tracking with CBCT projections (11 frames per second, fps) of pancreas, gastroesophageal junction, and lung cancer patients was 100%, 99.1% (range 98%-100%), and 100%, respectively. With intrafraction images (approx. 0.2 fps) of lung cancer patients, the success rate was 98.2% (range 97%-100%), and 94.3% (range 93%-97%) using templates from 1.25 mm and 2.5 mm slice spacing CT scans, respectively. Correction of intermarker relative position was found to improve the success rate in two out of eight patients analyzed.

Conclusions: The proposed method can track arbitrary marker shapes in kV images using templates generated from a breath-hold CT acquired at simulation. The studies indicate its feasibility for tracking tumor motion during rotational treatment. Investigation of the causes of misregistration suggests that its rate of incidence can be reduced with higher frequency of image acquisition, templates made from smaller CT slice spacing, and correction of changes in intermarker relative positions when they occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187346PMC
http://dx.doi.org/10.1118/1.4881335DOI Listing

Publication Analysis

Top Keywords

projection images
16
lung cancer
16
cancer patients
16
automatic tracking
12
irregularly shaped
12
intermarker relative
12
automatic matching
12
success rate
12
images
10
automatic
8

Similar Publications

Background: Microcardia and cardiomegaly are good diagnostic and prognostic tools for several diseases. This study investigated the distribution of microcardia and cardiomegaly among students of the University of Health and Allied Sciences (UHAS) in Ghana to determine the prevalence of microcardia and cardiomegaly across gender, and to evaluate the correlation between the presence of these heart conditions and age.

Methods: This retrospective study involved a review of 4519 postero-anterior (PA) chest X-rays (CXRs) between 2020 and 2023.

View Article and Find Full Text PDF

Objective: Periventricular anastomosis (PA), a recently recognized cause of hemorrhage in moyamoya disease, is reducible after bypass surgery. The timing of the reduction, however, remains poorly understood. The objectives of the present study were to demonstrate radiological reduction of PA occurring within 48 hours after surgery and to identify factors associated with reduction.

View Article and Find Full Text PDF

In this paper, we face the point-cloud segmentation problem for spinning laser sensors from a deep-learning (DL) perspective. Since the sensors natively provide their measurements in a 2D grid, we directly use state-of-the-art models designed for visual information for the segmentation task and then exploit the range information to ensure 3D accuracy. This allows us to effectively address the main challenges of applying DL techniques to point clouds, i.

View Article and Find Full Text PDF

DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.

J Imaging

December 2024

School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden.

As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements.

View Article and Find Full Text PDF

Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease.

BMC Neurosci

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.

Background: Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD.

Methods: SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!