In an effort to develop potent cyclooxygenase-1 (COX-1) inhibitors used as anticancer agent, a series of 2',5'-dimethoxychalcones was screened to evaluate their antiplatelet effect on human washed platelets suspension. Compound 2 exhibited potent inhibition of human washed platelet aggregation induced by collagen, significantly inhibited collagen- and arachidonic acid-induced thromboxane B2 release, and revealed inhibitory effect on COX-1 activity. Molecular docking studies showed that 1, 2, and 4 were bound in the active site of COX-1. These indicated that the antiplatelet effect of these compounds were mainly mediated through the suppression of COX-1 activity and reduced the thromboxane formation. To investigate the mechanistic action of COX-1 inhibitor enhanced the cytotoxic effect against human bladder cancer cells, NTUB1, we assessed the cytotoxic effect of 2 against NTUB1. Treatment of NTUB1 cells with various concentrations of 2 led to a concentration-dependent increase of cell death and decrease of reactive oxygen species levels. The flow-cytometric analysis showed that 2 induced a G1 phase cell cycle arrest but did not accompany an appreciable sub-G1 phase in NTUB1 cells. In addition, compound 2 increased p21 and p27 expressions and did not inhibit the expression of COX-1 in NTUB1 cells. Our results suggested that 2 enhanced cell growth inhibition or antiproliferative activity in NTUB1 cells through G1 arrest by COX-1 independent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b14-00099DOI Listing

Publication Analysis

Top Keywords

ntub1 cells
16
platelet aggregation
8
human bladder
8
bladder cancer
8
cancer cells
8
human washed
8
cox-1 activity
8
cox-1
7
cells
6
ntub1
6

Similar Publications

Patients with urothelial carcinoma (UC) experience gemcitabine resistance is a critical issue. The role of hedgehog pathway in the problem was explored. The expressions of phospho-AKTser473, phospho-GSK3βser9 and Gli2 were up-regulated in gemcitabine-resistant NTUB1 (NGR) cells.

View Article and Find Full Text PDF

Design, synthesis and antitumour evaluation of novel anthraquinone derivatives.

Bioorg Chem

February 2021

Faculty of Fragrance and Cosmetics, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. Electronic address:

We report the design, synthesis, and biological evaluation of 13 new and 1 known anthraquinone derivatives which exerted cytotoxicity against PC3, A549 and NTUB1 cell lines. The results indicate that, among these 14, compounds-1 and 14 showed the highest growth inhibitory effect on NTUB1 and PC3 cells, respectively. Compound-1 at lower doses targets DNA, induces DNA damage and subsequently triggers G2/M arrest and apoptotic cell death at 24 h.

View Article and Find Full Text PDF

In Fig. 1b, upper part, the cell viability counts after treatment with cisplatin and TSA in T24 cells was by mistake a duplication of the image for NTUB1 on the left. In the corrected version of Fig.

View Article and Find Full Text PDF

In this study, we aimed to investigate the antitumor effects of trichostatin A (TSA), an antifungal antibiotic that inhibits histone deacetylase (HDAC) family of enzymes, alone or in combination with anyone of the three chemotherapeutic agents (cisplatin, gemcitabine, and doxorubicin) for the treatment of human urothelial carcinoma (UC). Two high-grade human UC cell lines (T24 and NTUB1) were used. Cytotoxicity and apoptosis were assessed by MTT assay and flow cytometry, respectively.

View Article and Find Full Text PDF

Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) plays multiple roles in tumor progression. Studies have demonstrated that cisplatin (CDDP) induced CEBPD expression and had led to chemotherapeutic drug resistance. However, the underlying molecular mechanisms of CDDP-regulated CEBPD expression and its relevant roles in CDDP responses remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!