Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079238 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101054 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!