G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119271PMC
http://dx.doi.org/10.1016/j.bpj.2014.05.020DOI Listing

Publication Analysis

Top Keywords

calcium oscillations
16
translocation rates
12
gβγ translocation
12
translocation
9
translocation embedded
8
receptor activation
8
translocation rate
8
oscillations
6
calcium
5
g-protein subunit
4

Similar Publications

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Significance: Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements.

Aim: We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system.

View Article and Find Full Text PDF

Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.

Adv Sci (Weinh)

January 2025

Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.

Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.

View Article and Find Full Text PDF

Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia.

Endocrinology

January 2025

Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, 610065, Sichuan University, Chengdu, P.R. China.

Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low temperature effects on growth performance and growth hormone (GH) resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16°C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased insulin-like growth factor-1 (IGF-1) levels.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!