The orientation and dynamics of estradiol and estradiol oleate in lipid membranes and HDL disc models.

Biophys J

Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India. Electronic address:

Published: July 2014

Estradiol (E2) and E2 oleate associate with high-density lipoproteins (HDLs). Their orientation in HDLs is unknown. We studied the orientation of E2 and E2 oleate in membranes and reconstituted HDLs, finding that E2 and E2 oleate are membrane-associated and highly mobile. Our combination of NMR measurements, molecular dynamics simulation, and analytic theory identifies three major conformations where the long axis of E2 assumes a parallel, perpendicular, or antiparallel orientation relative to the membrane's z-direction. The perpendicular orientation is preferred, and furthermore, in this orientation, E2 strongly favors a particular roll angle, facing the membrane with carbons 6, 7, 15, and 16, whereas carbons 1, 2, 11, and 12 point toward the aqueous phase. In contrast, the long axis of E2 oleate is almost exclusively oriented at an angle of ∼60° to the z-direction. In such an orientation, the oleoyl chain is firmly inserted into the membrane. Thus, both E2 and E2 oleate have a preference for interface localization in the membrane. These orientations were also found in HDL discs, suggesting that only lipid-E2 interactions determine the localization of the molecule. The structural mapping of E2 and E2 oleate may provide a design platform for specific E2-HDL-targeted pharmacological therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119277PMC
http://dx.doi.org/10.1016/j.bpj.2014.04.060DOI Listing

Publication Analysis

Top Keywords

estradiol oleate
8
long axis
8
orientation
7
oleate
7
orientation dynamics
4
dynamics estradiol
4
estradiol estradiol
4
oleate lipid
4
lipid membranes
4
membranes hdl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!